
/ii;_ ' I

/o 33 7
P.s

Development of a Prototype Spatial Information Processing
System for Hydrologic Research

Dr. Jayanta K. Sircar

November, 1991

Prepared for

Goddard Space Flight Center
Greenbelt, MD 20771

Contract NAG5-1466

. /

7"/i I""

(NASA-CR-191Z2_)
PROTOTYPE SPATIAL
PROCES3[NG SYSTEM

RESEARCH (NASA)

DEVELOPMENT 0 c

INFORMATION

Fq_ HYDROLOGIC

52 p

A

G]I4]

N92-32590

Unclas

0109339

Development of a Prototype Spatial Information Processing
System for Hydrologic Research

Dr. Jayanta K. Sircar
o

November, 1991

Prepared for
Goddard Space Flight Center

Greenbelt, MD 20771

Contract NAG5-1466

Contents

INTRODUCTION

PART

PART I: COMPUTATION OF TIME-AREA CURVES

Introduction

Test Data Set

Strategy to Generate Time-Area Curves

Watershed Terrain Data Acquisition
Hardware/Software -,

Data Acquisition _

Watershed Segmentation

Estimation of Channel-Flow Velocities

Computation of Overland Flow Times

Computation of TimerArea Isochrons and the

Time-Area Curve ._..__
Conclusion

References :_:_,--

II: ANALYSIS OF SYNTHETIC APERTURE RADAR DATA

Objectives _:

Organization of Report _._:

Section 1: A Program to Decompress SAR Data
Code Enhancements

Description of Code :.:_.

Section 2: Verification of Decompression Program

Section 3: Compilation-and Execution

Compilation
Customization

Execution

Appendix 1- LOTUS Spreadsheet Listing

Appendix 2: Source Listing

I-1

I-1

I-2

1-2

I-3

I-3

I-4

1-5

I-6

1-7

I-8

I-9

II-1

II-1

II-2

1I-2

11-4

II-5

1I-7

II-10

II-10

II-11

I1-12

11-18

II-20

ORIGINAL. PAQ£ 15

OF POOR QUALITY

Introduction

Significant advances have been made in the last decade in the areas of Geographic

Information Systems (GIS) and spatial data analysis technology, both in hardware

and software. Science user requirements are so problem-specific that currently no

single system can satisfy all of the needs. The work presented here forms part of

a conceptual framework for an all-encompassing science-user workstation system.

While definition and development of the system as a whole will take several

years, it is intended that small scale projects such as the current work will address

some of the more short term needs. Such projects can provide a quick mechanism

to integrate tools into the workstation environment forming a larger, more

complete hydrologic analysis platform.

This report describes two components that are very important to the practical use

of remote sensing and digital map data in hydrology. Part I of this report

describes a graph-theoretic technique to rasterize elevation contour maps, while

part II describes a system to manipulate synthetic aperture radar (SAR) data files

and extract soil moisture content. The principal investigator for this project was

Dr. J. K. Shear with research assistance provided by Mr. Russell Fink.

Traditionally, the hydrologist uses topographic data, which allows for time-area

methods of devising runoff models on watersheds. Such data is rapidly becoming

available on digital media; however, at the present time, much of it still exists on

paper and there is no foreseeable date at which most of it will be digitized.

Consequently, the hydrologic workstation concept suffers because of the

unavailability of data in the digital form. Scanning technology has improved over

the last decade to the point that converting planar contour data into digital form

is now feasible on the microcomputer level. Thus, the workstation analysis of

topographic maps requires a tool that is able to convert paper map data into digital
forn_

Recent advances in the application of Synthetic Aperture Radar (SAR) to the

detection of soil moisture content has added a new type of data to the field of

hydrology. Currently, NASA's Jet Propulsion Laboratory (JPL) maintains a

comprehensive collection of aircraft-collected SAR data, and plans to expand this

collection by offering spacecraft-acquired data. SAR data is stored in a format

that must be decompressed in order to be analyzed. A tool for decompressing as

well as extracting soil moisture data from SAR data would need to be included

in the hypothetical hydrologic workstation to make ground moisture data available

to the hydrologist.

The first of the two hydrologic tools that will be of interest in the workstation

determines the time-area curve and drainage isochrons using digitized topographic

data. A system of desktop microcomputer programs is presented in section one,

and accepts raster digitizations of topographic maps and channel delineations and

produces the time to drain as well as the S-hydrograph of the watersheds.

The second program provides a mechanism for decompressing SAR scenes into

tractable data files containing information on soil saturation, and is presented in

section two. This section includes code that can be used for a theoretical

workstation system, and thus includes comprehensive operating and installation
details.

Both of these projects demonstrate the concept of modular design in the ideal

workstation in that the science user has available many different smaller tools that

share a larger system. With the continued bottom-up development of such

systems, the short term needs of the science user can be met now while progress

is made toward the larger, fully integrated platform.

2

Part I: Computation of Time-Area Curves

Engineers engaged in hydrologic modeling and simulation recognize the

considerable effort required for manually determining key terrain related

information, e.g., overland flow lengths, slopes, channel velocities. In most cases,

the required information is derived from available maps. With recent

developments in the use of remotely sensed imagery, electronic data capture

technology for map digitization, and the means to efficiently manipulate digital

terrain data using a Geographic Information Systems (GIS) framework, the task

of hydrologic process simulation has become significantly easier (Shear, 1986;

Van Blargan, 1990).

However, the modest investments required for data acquisition and processing to

implement these methods limit their applicability to large, regional scale studies.

The "small user", engaged more frequently in projects over relatively small,

isolated areas can rarely afford the sophisticated data acquisition and computing

systems widely in use by the larger, more "funding rich" organizations.

Consequently, a significant number of small to medium sized engineering firms

continue to rely on tedious and time consuming manual procedures.

Meanwhile, the Use of microcomputers and desktop raster scanning equipment is

gradually gaining prominence as a standard environment to support routine office

productivity, even within many of these resources for developing tools that will

remove some of the inefficiencies in routine hydrologic simulation. A valuable

contribution towards such a task is the experience and technical concepts gained

form past developments in remote sensing based GIS technology-- concepts that

provide both a basis, and a framework, for the search for cartographic data

analysis.

The overall objectives of the present research are to:

1) improve the efficiency in cartographic map

2)
3)

analysis and spatially

distributed hydrologic simulation, in particular, for small watershed studies;

economize the use of available hardware and software technology, and

extend the use of GIS and remote sensing technology by small to medium

sized engineering firms for use in routine small scale hydrology.

The practical utility of any new technique is best understood through a realistic

engineering application. Recognizing that a popular approach for hydrologic

simulation in many routine engineering applications is the routing of a time-area

histogram (Sircar, 1986), the success of the developed strategy is demonstrated

in a test application. Key to the demonstration is the integration of a set of GIS

based processing techniques to provide the spatial boundaries of the time-area
isochrons.

I-1

Test Data Set

To demonstrate the capability of the proposed methodology and the associated

computer based programs, a small watershed was selected from a list of

experimental watersheds published by the Agricultural Research Service (ARS)

of the United States Department of Agriculture CUSDA) (ARS, USDA, 1964).

The watershed is located in Trcynor, Iowa and has drainage area of approximately

64 acres. Slopes in the area vary from near zero to approximately 19 percent.

The predominant landuse in the watershed is cultivated contoured com.

A strategy to Generate Time-Area Curves

The overall structure of the proposed strategy is partitioned into a series of tasks.

Each of the tasks are implemented through a number of software modules. Fig.

1 illustrates the sequence of the major tasks associated with the development of

the semi-automated digital approach. The functional descriptions of each of the

principal components are described below.

Watershed Terrain Data Acquisition

Data Structure The more popular methods in GIS based hydrologic modeling

use a grid-cell data structure to store and represent terrain information (Sicar,

1988). In most practical applications, _the

!
Watershed Digitization I

I

Watershed Segmentation i

Computation of Channel Velocities !

Computation of Overland Flow Times I

-3 ,J

Computation of Time.Area Isochrons I

FIG. 1. A structure for Automating the Computation of Time-Area

Isochrons in Small Watershed

I-2

studyareais divided into a grid-matrix, with each grid cell (pixel) having a unique

value for each physiographic property. In typical surface flow simulations, as in

the application used in this study, the excess runoff for each pixel in the watershed

is routed to the appropriate channel over neighboring pixels, and then along the

channel to some specified point of interest where the hydrographic is produced.

Hardware�Software The present research is based on a standard off-the-shelf

Macintosh coupled to a commercially available raster scanner. While most of the

GIS based hydrologic applications were written for this Sly. cific study, a public

domain Image Display and Processing package (IMAGE, 1990; available from the

National Technical Information Service) provided the principal image handling

tool for image display and manipulation on the Macintosh screen.

Data Acquisition The principal data components required for hydrologic
simulation of surface flow velocities are land use, elevations, channel locations,

and watershed boundaries. Using a grid-cell, or "pixel" data format, Ragan

(1991) demonstrated an efficient procedure to convert landuse maps created from

digital raster files. The major problem however is posed by the need to quickly

create the required elevation information.

A common scenario routinely used by the practidng engineer is a map or a part

of a map on "hard copy" paper showing contour lines and channel reached. Using

a raster coupled to a microcomputer, the "black and white" hard copy is scanned

into a digital raster format file. Using simple image processing and image

Fig. 2. Raster Scanned Image of Fig. 3.

a Contour Line Map of

the Treynor Watershed

Scanned Image of

watershed boundary

I-3

editing tools, (Sircar and Cebrian, 1986), the scan digitized map (fig. 2) is
processedto generatedigital overlays of the watershed boundary and the channel

lines (Figs. 3 and 4).

The output scanned image (fig. 2) is a "dumb" image without any associated

attribute of elevation. The conversion from a "dumb" image into an image with

contour lines labelled with appropriate contour values is accomplished by using

a program developed using a semi-automatic labeling technique outlines in detail

by Sircar and Cebrian (1991) i Tl}.e labelled contour image data, the basin

boundary image, and the channel location image are input, within a GIS

framework, to a program that computes the Digital Elevation Model (DEM) for

the scanned watershed. Fig. 5 is an example of the output DEM for the contour

image displayed in Fig. 2.

Fig. 4. Image of Channel Lines. Fig. 5. Gray-Shaded Display of

Output DEM for the

Treynor Basin

Watershed Segmentation

The channel geometry of fig. 4, and the generated DEM shown in fig. 6, is next

input to a program that segments the overall basin into a series of sub-basins, with

each lower order sub-basin draining into the next higher order sub-basins at the

stream junctions. The program also allows the user to interactively point to a

screen display of the channel geometry, point to outfall pixels of interest along the

channel system, and generate the corresponding upland sub-basin. Simple slope-

aspect relationships between pixels are used to link higher to lower pixels to

1-4

generate a flow direction. A set of heuristics (Sircar, 1986) are used to guide flow

directions when anomalous elevation peaks, flat pixels or elevation sinks are

encountered in the direction of flow. Fig. 6 shows the result of watershed

segmentation by the successive accumulation of lower to higher pixels beginning

from stream junctions.

Fig. 6. Segmentation of Treynor Watershed into Subbasins upstream of

Stream Junctions

Estimation of Channel-Flow Velocities

The prerequisites for computing the time-area isochrons are f'wst, to determine

velocities and times of flow along channel pixels, and second, velocities and times

of overland flow. Sircar (1986) demonstrated an efficient technique to correlate

channel sizes and discharge characteristics to the drainage area at any location.

In the present study, results of watershed segmentation from the previous step are

used to compute the drainage area for each of the reach lengths within the basin.

The computation of estimates for the flow velocities along the channel reaches

were based on a series of geometric relations derived by Dunne and Leopold

(1978) and a set of sensitivity analysis performed by Helwa (1983).

The approach by Sicar (i986), incorporated in this research, uses the pixel based

3-dimensional flow conveyance linkages inferred from the DEM to i) estimate

upland drainage area, slopes, widths, and lengths of sub-basins, and ii) provide

estimates of the channel cross-sections, average channel slopes, and average

channel velocities at specified point along a channel. Table I is an example of the

type of intermediate output showing several channel/basin characteristics generated

by the watershed segmentation module using the channel geometry, basin

boundary and DEM shown in figs. 3, 4, and 5. Once the velocities of flow along

the channel pixels are determined, the developed program computes for each pixel

I-5

along the channel, the time flow. In the case of the prescnt research, the outfall

location is indicated by the letter '0' in fig. 4.

TABLE 1. Channel Geometry Computed using Geomorphic Relationships

"Chan. Seg # cr-are_ depth 2 radius J dr-area* slope 5 velocity 6

1 0.4690 0.2475 0.1095 0.0046 0.0730 3.0482

2 0.2741 0.1950 0.0856 0.0021 0.0464 2.0614

3 1.0078 0.3476 0.1552 0.0138 0.0454 3.0372

4 1.0967 0.3609 0.1613 0.0156 0.0341 2.7011

5 0.4919 0.2528 0.1119 0.0050 0.0126 1.2850

6 0.2384 0.1833 0.0803 0.0018 0.0343 1.6983

7 2.3830 0.5093 0.2297 0.0475 0.0250 2.9306

Icr-area:

2depth:
3radius:

*dr-area:

5slope:

%elocity:

Cross-Sectional Area (sq-ft)
Bankfull Depth (ft)

Manning's Hydraulic Radius (ft)

Upland Drainage Area for Specified Channel Reach

Average Slope of Channel Reach (%)
Bankfull Velocity at Reach 0utfall (assumed constant for entire

reach) fit/see)

"See figure 3 for reference to channel segment numbers

Computation of Overland Flow Times

The estimation of overland flow times is a three-step process:

1) identify the pixels that constitute a flow line draining into an ouffall pixel

along the stream, the flow fine for every pixel being defined by the

gradients of the flow network;

2) determine the time of flow for every pixel based on its corresponding path

length along the flow direction and slope, and

3) compute the total flow time across any overland flow line as the sum of

individual flow times to the basin ouffall for each pixel.

Taking advantage of GIS framework of accessing several data planes concurrently,

a program was written to compute overland flow velocities at each pixel. The

methodology to estimate overland flow velocities was based on a set of curves

developed by SCS and is presented in detail by McCuen (1982). In equation

I-6

form, therelationshipof velocity (V) to pixel slope(S) asdevelopedin the SCS
methodis of the form:

V = a'Sb

in which 'a' and 'b' are coefficients with values taken form McCuen (1983) for

varying types of landuse.

In the present case, since the landuse in the test area, as mentioned previously in

the section describing the test data set, was uniformly cultivated corn, the values

of 'a' and 'b' for Eq. 1 selected from Table 2 were '0.5' and '0.5' for all pixels

in the watershed. This alleviated the need, in the given example, for the creation

of a separate digital, pixel based, landuse data base. The overland flow model

used in the present application may, however, be replaced by any model of user

choice.

Computation of the Time-Area Isochrons and the Time-Area Curve

The output from the previous steps are a pixel image containing the times of flow

to the outfall for each channel pixel and an image with the times to flow for each

channel pixel. The results from these two image planes are combined into a

single image plane (Fig. 7) in which the value at each pixel is the flow time in

seconds for each pixel in the watershed. To provide the user with a meaningful

visualization of the results of flow time computation, the flow times have been

grouped in 5 minute intervals. The boundary of each of the time intervals implies

the corresponding 5 minute time-isochron. The corresponding time-area curve

(Fig. 8) is constructed from the histogram of the number of pixels within each 5-

minute time interval.

One expects the time-area curve to be in the form of an 'S'. As seen in Fig. 8.

the digitally simulated time-area curve does indeed conform to the classical 'S'

curve concept. The time required to implement the digital approach to the

example shown in the study was approximately 40 minutes.

1-7

Fig. 7. A Gray Shaded Display

of the 5-minute Time-Area

Isochrons in the Treynor
Watershed.

=.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

!
0.2

0.1

//---=:;:

/_¢ I I I J I I

5 I0 15 20 25 30 35
TILq£ I .u-z.'.utGI)

Fig. 8. Time-Area Curve for the

Treynor Watershed.

Conclusion

The close agreement between the digitally simulated curve and the corresponding

manually determined curve, particularly in shape, confh'ms the strength of the

system for use as a practical engineering tool. Compared to the 5 or 6 hours of

time required to compute the time-area curve for a watershed even as small as that

selected here, the digital approach is significantly better. An added advantage of

the developed approach is the ability to respond to very small and subtle

variations in the way in which we per-pixel physiographic and landuse

characteristics are disposed. The pixel based system therefore indicates a

promising strategy to evaluate the spatial variability in watersheds once

appropriate overland flow models are incorporated.

I-8

References

Dunne, T., and Leopold, L.B., 1978, Water in Environmental Planning. W.H.

Freeman & Co.

Helwa, M.F., 1983, "The Channel Network in Hydrologic Simulation: Improved

Modeling and Evaluation of Significance," Ph.D. Dissertation, Dept. of Civil

Engrg., University of Maryland, College Park, MD.

McCuen, R.H., 1982, A Guide to Hydrologic Analysis Using SCS Methods,

Prentice-Hall, Englewood Cliffs, NJ.

Sircar, J.K., 1986, Computer Aided" Watershed Segmentation of Spatially

Distributed Hydrologic Modeling. Ph.D. Dissertation, Dept. of Civil Engrg.,

University of Maryland. College Park, MD.

Sircar, J.K. and Cebrian, J., 1986, "Application of Image Processing Techniques

to the Automatic Labeling of Raster Digitized Contour Maps", Proceedings.

Second International Symposium on Spatial Data Handling, July 5-10, Seattle,

Washington, pp. 171-184.

Shear, J.K., 1987, "Definition and Testing of the Hydrologic Component of the

Pilot Land Data System", Report on NASA-University of Maryland Project, Grant
No. NAG5-512.

Sircar, J.K., 1988, "Linking Spatial/Geographic Information Processing

Capabilities to NASA's Land Analysis System", Report on NASA-GSFC Contract
No. S-79638-D.

Sircar, J.K. and Cebrian, J.,

Digitized Contour Maps",
In Press.

1991, "An Automated Approach for Labeling Raster

Journal of The Amer..Soc. of .Ph. & Rem. Sensing.

USDA, Agricultural Research Service, 1964,."Hydrologic Data for Experimental

Agricultural watersheds in the United States," Misc. Publ. No. 1194.

VanBlargan, E.J., Ragan, R.M., and Schaake, J.C., 1990, "Hydrologic

Geographic Information Systems," Geographic Information Systems 1990:

Transportation Research Record, Trans. Res. Board.

I-9

Part II: Analysis of Synthetic Aperture Radar Data

Dubois, et.al., developed a method of radar scene compression, which led to the

efficient storage of large 3-band scenes. The method described generates

Compressed Stokes Matrix (CSM) data from 3-band radar images; using certain

assumptions about the data and the Stokes Matrix representation of the reflected

radar intensities, the compression method effectively reduces 64 bytes of data to

a 10 byte unit, resulting in an efficient compression ratio. Since the development

of this compression technique, all 3-band radar data available at JPL are stored in

this CSM form.

Included with the Dubois paper is some VAX FORTRAN code designed to

implement the reversal of the compression equations; however, there are problems'

with its efficiency and portability. It is also a VAX dependent version that would

require some conversion to run on other platforms. These problems require

knowledge about the Stokes Matrix, and thus will be examined in greater detail

in section 1 of this report.

A second piece of software to analyze CSM data, developed for the Apple

Macintosh, is available from JPL. This package is called MacMultiview

[Norikane, 1989]. There are several problems with this system, the primary one

being the reliance on the use of the Macintosh windowing environment and thus

is not portable to other operating environments. This dependency makes analysis

or extension of the code difficult, since the windowing system makes use of an

unorthodox flow of program logic. The Macintosh code is, however, easier to

implement than the Dubois code in that it provides a pleasant user interface.

The general lack of flexibility and readability of both MacMultiview and the

Dubois program created the need for a simple decompression code to be

developed for a portable environment. For example, the Hydrologic Sciences

Branch recently purchased a color Silicon Graphics workstation that runs the

UNIX operating system; because of its use of UNIX, neither of the existing

systems are able to operate on this machine. We have chosen to implement C

code under the UNIX environment, and have removed specific dependencies on

UNIX as much as possible to allow portability to other operating environments.

Objectives

The current task is to create and verify an efficient, portable C program to

decompress Stokes Matrix Radar image files for the analysis of polarized radar

reflection intensities of hydrologic phenomena. Specifically, the computer

program developed here is a simple decompression algorithm to decompress the

10-byte CSM data and generate a 4-byte real per-pixel total power value.

II-1

Organization of Report

This report is organized in the following way: section 1 of this report describes

the program, its features and use; section 2 presents an automated verification of

the CSM program; section 3 contains compilation and execution instructions; and

the appendices contain the source code listings for the verification method and the

C programs.

Section 1: A Program to Decompress SAR Data

The JPL representation of SAR scenes relies on a matrix representation of

received power, known as the Stokes Matrix. The Stokes Matrix (SM) is a 4 by

4 matrix (16 elements) of real data corresponding to a received radar scattering

matrix. The C program tp.c presented below implements the Dubois algorithm to

compute total power. The SM requires 16 elements of real storage, or 64 bytes;

for three bands of radar and a typical sample size of 1024 x 750, the storage

requirements are fairly large. Reduction of the scene size is possible, however,

because of some inherent mathematical properties of the SM. First, the SM is a

symmetric matrix; thus, only the upper (or lower) triangular elements are unique.

Further, one of the main diagonal elements is a sum of the other three, yielding

only 9 distinct elements in the matrix. Another useful property of the SM is that

the first element is the largest element of the matrix, and thus the other elements

can be normalized by this first one to reduce the range of data values and thus

reduce the size of the storage needed for each element. Finally, the whole radar

scene can be normalized by a general scale factor, which could reduce the range

of received intensities allowing for a smaller and more precise storage model.

These properties of the SM data form the basis for a data compression scheme.

Dubois, et. al. have developed such formulas for storing the SM data in a 10-byte

record as distributed in the JPL data sets. Decompressing the 10-byte record and

extracting total power proceeds in the following way. First, the element /_11 (the

largest element of the SM) is obtained from the first two bytes of the record and

then used to rescale the other 8 elements. Next, the SM is vectorized through

multiplication by the transmit and receive vectors corresponding to the desired

polarization angles. Once the 9-element real number SM is vectorized, the total

power is obtained by summing the elements of the SM. A detailed analysis of

how the 10-byte record is used to reconstruct the 64-byte SM is now presented.

1I-2

The exact replication of the SM elements

Fll e12 f_3 F1,

F21 e2, F23 F_

F31 e32 f_ F34

V_ F42 F_3 F_

from the 10-byte CSM data is performed through the following formulas; theXi. 1

are obtained as an intermediate step:

x_2-

=[byte (4)X13[

byte(3) ,
YTV __

2.sign [byte (4)]

X1a=[byte(5)] 2_[_ .sign[byte(5)]

X23=[byte(6)]2[0 .sign [byte (6)]

X2,:[byte(7)]2127 10 -sign [byte (7)]

byte(8)
Ass- 127.0

byte(9)
X34- 127.0

Xa4_ byte (lO)
127 .0

where byte(i) represents the i m byte of the 10-byte CSM record and

sign(x) = Ixt. Next, Fll is computed with
x

_II=[byte(2)254.0 +1"5] "2byte(1)

where byte (1) represents the exponent and byte (2) the mantissa of #n"

Computing the other elements Fi. _ is done by multiplying Xi. _ by iSn, excluding

'note that Dubois, et.al, shows this formula to be byte (3) = I/V/' (127 *X13) in the text;

after reading their FORTRAN code, it is evident that X12 was erroneously listed as X13.

II-3

element F22"

Finally, F22 is computed as

After the Stokes Matrix is decompressed, its elements are then multiplied by gen
fac to create the actual Stokes Matrix. The elements of the actual Stokes Matrix

are then transformed by G_ and G t in the following way to obtain the total

power:

Implementing a direct, straight-forward translation of the above decompression

method yields simple, small, yet inefficient computer code, as is presented in

Dubois. The Dubois code provides a way of decompressing a CSM file into total

power, but because of various problems, this code is not suited to a general

application.

Code Enhancements

The primary problem with the code is its inefficiency. Certain basic properties of

the Stokes Matrix (SM) are ignored in order to present a clear example of a

decompression technique, resulting in redundant calculations and a slow

decompression of data.

A concept is presented here which allows for some speedup of the process. The

concept suggested is the use of storing all possible values of ._x_ in a two-

dimensional array XXX, from which a given combination of values for byte(l)

and byte(2) can be used to dereference the corresponding value of _. By

precomputing predicted values of an equation, certain calculations can be replaced

with array accesses, resulting in a run-time speedup.

II-4

The inefficiency of the FORTRAN code comes not from the use of such a
method,but from the limited scopeof the methodas the authorsapply it. The
programpresentedin thisreport extendsthis basiclookupcost-savingmeasureto
includeall aspectsof theStokesMatrix decompressionprocess,not restrictingits
useto thecomputationof -_11"

By employingextensiveuseof array lookup,disk bufferingtechniques,andonly
decompressinguniqueelementsof thesymmetricalStokesMatrix, tp.c manages
to perform thetaskin slightly lessthan1minute 30secondson a SparcstationII,
proving theeffectivenessof thesespeedupsin datadecompression.This contrasts
significantly to thereportedtimesfrom the VAX and Macintosh versions.

Tp.c has other advantages over the FORTRAN code that make it better for a

practical application of decompression. One such advantage is its portability --

the code can be transferred directly to a wide variety of operating environments

with simple recompilation. Being separated from the task of image grayscaling,

another advantage is that the design is simple, easy to read and modify. It also

employs very general procedures that will allow for the extraction of data from

changing header types for future applications.

Presented below is a description of the code to compute the per-pixel total power
from a CSM data file. The code has been omitted in this section to maintain

brevity; however, a complete copy of the code appears in the appendix.

Description of Code

One function of the decompression code is to interpret and extract information

from the header. To be fully flexible, the code is able to search through the

header looking for specific ASCII strings, and retrieve data values stored nearby.

The header is composed of 50-byte records; the leftmost part of a given record

contains text describing the data value that exists in the rightmost part. The

strategy employed to extract information is to scan the header fields for known

strings, and return the rightmost portion of the record matching the strings

searched for as numeric data. Extraction of header data takes place in the function

void prepfiles(). This function is designed to handle both the new and old header

•formats, and extracts data such as offsets of the headers and CSM data, the

general scale factor, and the like.

The second function of tp.c is extract the. Stokes Matrix elements from the CSM

data, accomplished within the body of function csm2pwr(). Presented here is a

discussion of the CSM decompression method and how it applies to the operations
of the code.

The first task after evaluating the header data is the computation of the transmit

II-5

and receive polarization vectors. The vectorsare storedas stvec and srvec,
respectively,as is in the Dubois code. Array Mij is then loaded with these

vectors according to

i II

I

The 2-element sum in the line

M[i][j] = srvec[i]*stvec[j] + srvec[j]*stvec[i]

is done since although only the upper triangular elements will be computed in the

decompression loop, the vector multiplication must be carried out over the whole

matrix.

The next step is to precompute and store all possible results of the decompression

formulas in array variables; EQI is an array containing the precomputed results

i ; and EQ3, those from
of#n; EQ2, those of the expression :1_27.0

i]2*sign (i)127.0
J

equations.

, comprising a basic set of operations of the decompression

The main decompression loop begins by reading inone whole 1024-sample line;

then, for every pixel, the following process takes place. Eacla 10-byte sample is

broken into individual bytes by the macro dbyte(i), Vi 6 [0,9] corresponding

to the i th byte of the sample. #n is obtained by using bytes 1 and 2 (dbyte(0)

and dbyte(l)) to dereference array EQ1. The other elements, represented by array

F, actually represent elements of the Xij array; it is only in the last part of the

loop -- the summation of variable power -- that these elements take on their

corresponding ?-'-tt values. Notice that the distributive laws of arithmetic allow

for the convenience of saving the rescaling by Fn for the last computation --

power *= -#'lx"

The final part of the loop writes the line of decompressed real numbers to the

output file, and the last part of the code closes the appropriate files.

An important note on the decompression loop is that the use of array F represents

the computation of the gij, not the computation of the Fl._ elements; the true

values of the elements Fi._ are never individually computed. This is a

consequenc e of the design of the loop which is intended to minimize the number

of arithmetic operations. True determination of the F_j values would require a

•per-element multiplication by both the arrays M and the transmit and receive
vectors srvec and stvee, which is done in the Dubois code; as is, tp.c has been

designed for speed, and thus contains shortcuts to minimize the number of

arithmetic operations.

11-6

Section 2: Verification of Decompression Program

Presented in this section is an automated method for verifying the total power

values generated by tp.c. This method of verification uses a 10-byte sample with

a direct application of the decompression formulas. The program makes use of an

efficient system for decompressing 10-byte samples based on, but not directly

resembling, these formulas, and thus requires some form of verification.

The verification method is coded as a LOTUS 1-2-3 ® spreadsheet, and offers

versatility in that any 10-byte sample may be decompressed; however, there is

some complexity in the implementation of the decompression formulas in LOTUS.

Presented in the appendices is a detailed listing of the cell formulas; one formula

of particular interest is a formula to compute xy for positive x. A logarithmic

equivalent is used in LOTUS since no direct function exists:

X y = eY'In(x)

for positive x.

The LOTUS spreadsheet was executed on the byte values taken from the

Mahantango 080-3 data set, element (1,1):

byte

1

2

3

4

5

6

7

8

9

10

value

128

66

204

210

136

211

194

171

92

163

For a general scale factor of 44.51778, the C decompression system reports a

power value of 71.871094, in close agreement with the spreadsheet results.

The spreadsheet output is presented below:

II-7

Mahantango 080-3 L-BAND, pixel (1,1)

User Entry Area:

Gen fac

44.51778

Vectors Degrees

tr ellip 45
tr orien 45

rc ellip 45
rc orien 45

ComputationArea:
stvec

1 0

Vectors Radians

tr ellip 0.785398
tr orien 0.785398

rc ellip 0.785398
rc orien 0.785398

0

Byte Values [0..255]

byte 1 128

byte 2 66

byte 3 204

byte 4 210

byte 5 136

byte 6 211

byte 7 194

byte 8 171

byte 9 92

byte 10 163

srvec

1

0

0

1

Bytes-128

0

-62

76

82

8

83

66

43

-36

35

Xij array
55.91013 F11hat

0.598425 X12

0.416889 X13

0.003968 X14

0.427119 X23

0.270073 X24

0.338583 X33

-0.28346 X34

0.275591 X44

F array

55.91013 33.45803 23.30831 0.221852

33.45803 21.57162 23.88027 15.09979

23.30831 23.88027 18.9302 -15.8485

0.221852 15.09979 -15.8485 15.4083

Multiply cols by stvec below
55.91013 0 0 0.221852

33.45803 0 0 15.09979

23.30831 0 0 -15.8485

0.221852 0 0 15.4083

Multiply those rows by srvec below

II-8

55. 91013 0 0
0 0 0

0 0 0

0.221852 0 0

Results:

Total Power: 71.76213

0.221852
0

0

15.4083

II-9

Section 3: Compilation and Execution

This section presents compilation and usage instructions for the system. Complete

copies of the code can be obtained from the authors through electronic mail or

other means. The figures accompanying this appendix represent an actual

compilation and execution of the system on the Mahantango 080-3 data set

(L-band), and are presented for quick reference on constructing the system.

Compilation

The system of programs has been developed for use on UNIX systems, and

consists of several C subprograms and header f'des that comprise a heirarchical

menu system of tasks related to CSM data decompression. Figure 1 is a listing

of the C subprograms as they appear in the sample directory; each program is
listed below and described:

Program Name

Make file

data_file

types.h, menu.h

main2.c

im.c

prep.c

Function

directs creation of the system under the

UNIX "make" program; requires BSD 4.3 or

later of UNIX

listed in figure 2, contains information on

where to find the data file

global header files containing basic data

types and menu system definitions

official definition of function main(); calls

function inter_mainO in file im.c, for an

interactive execution (this has been left open

for an extension for a batch routine later)

definition of function inter_main(), drives the

main menu and controls prepfiles(prep.c) and

csm2pwr(tp.c), and other general purpose
functions

contains function prepfiles0, reads the

header information as described in section 1

II-10

tp.c definition of function csm2pwrO,performs
the data decompressioninto real data as
describedin section1

cls.c containsa routine to clear the screen; the
user can modify the definition of

"CLEAR_COMMAND" to implement a

clear-screen feature

ga.c,sub.c,util.c various routines called from other functions

imold.c not used at present

aVg_S, c ga. e main2:.-c sub, c util. c

Figure 1

The system is compiled using the UNIX "make" utility, and requires ANSI-C

Cgcc" or equivalent for UNIX systems). Currently, only ANSI-C is supported,

although only minor changes need be made to support non-ANSI C. Finally, the

resulting file "main" is executed.

Customization

The system has been designed with a bit of customization possible through defines

and the make file. Currently, most of the customizable options are handled

through the C preprocessor and the Makefile, although one specific option is
available to the user.

The Makefile handles all the compilation; thus, to change any of the compilation

options (such as the name of the C-compiler), the user can modify the Makefile

directly in accordance with the documentation on the UNIX make utility.

Debugging is available to the user for the purposes of extending or modifying the
code: execute the command

make "CFLAGS=-DDEBUG"

in order to turn the debugging flags on. This change in definition effectively

activates certain sections of code that make debugging easier.

II-11

s

i

The only customizable user option at the present is the ability to change the
definition of clear screen in the file cls.c. To do this, f'trst identify the clear

screen command on the machine this is to be run on. Next, change the definition

of "CLEARCOMMAND" in line 3 of the file to contain the operating system

command to clear the screen; for UNIX, this definition would be:

#define CLEARCOMMAND "clear"

In the current setting, "echo " causes UNIX to print a horizontal line

segment each time a clear screen request is made of the program; the effect of this

is to separate the menus by a line of dashes.

Execution

Program "main" is the compiled result of the system of subprograms. Main

operates interactively with a series of heirarchical menus: the user can select from

just those tasks that are feasible at the current time. A description of these tasks

is now presented in the form of a sample interactive session. Figures 3-7

represent an actual execution of the program on the Mahantango 080-3 data set;
each of these menus will be described below.

Figure 3 is the opening menu that the user sees. The user can open a file, or quit

the program. In this case, option 1 was selected to open a data file.

jpT. CSM DecompreSsion Progr_ --:_!.i:!I_ "

I. Open Data File

O. Quit

Your choice [0-1]: i

Figure 3

In figure 3a, the user enters the name of the data file. Data file names can either

name the actual CSM data file, or can name a file consisting of a '#' as the first

character, and a path to an actual CSM file; the file "data_file" is listed in figure

3b as an example to this indirect file referencing.

JPL CSM Decompression Program -- Open Data File

Enter the name of the data file (or pointer file): data file

(opening /home$/jsircar/air_ar/machydro_data/tango. Iban_)
File is :in new header format...

• Figure 3a

II-i2

ceaneserv[-/nasa2]-17 :cat data file

/homes/j sircar/airsarTmachydro data/tango. 1band

. ,. ,::7-:::Put the nama of _e file you w_i_i_o _ferance indirectly on the top

linel 0f thi"x fiiQ_; later, thi*:8iii_id:.i.be:'made iinto a database f_r

Figure 3b

Once the file is opened, the menu of fig. 4 appears. The user selects option 2 to

enter the data set attributes. Figure 4a shows the resulting screen where the user

is prompted for the integer degrees of various angles corresponding to the transmit

and receive orientation vectors; in this case, a 45-degree angle was chosen for all

orientations.

1. oL=,_.!)ata:!'_Z.,,"

2. Enter :DS AttributiB
................. . .: .>_..>.>

0. Quit

Your choice [0,2]: 2

L

Figure 4

JPL CSM Decompression Program -- C_'I_. Attributes

Enter the following INTEGER attributes for sc_,_e: l_!_t_ngo 080-3

Transmit ellipticity angle: 45

Transmit orientation angle: 45

RecaiVe elliptiCity angla: 45

Receive orientation angle: 45

(Press ENTER to continue...}

Figure 4a

After the data set attributes are selected, the menu of figure 5 is shown. Here, the

user must choose a quantity of CSM data to decompress; either the whole data set

can be chosen, or a small rectangular subsection bounded by row, column

coordinates can be used. The user chooses option 4, to select a partial area,

bringing up the screen in figure 5a. Now, the user enters the "ULHC" and

"LRHC" (upper-left-hand-corner and lower-right-hand-corner) coordinates, in

II-13

L_
ti

row(y, top-to-bottom), column(x, left-to-right) format. Note that the origin is

centered at (0,0), not (1,1).

Figure 5

Figure 5a

Note that whenever a partial area has been selected for decompression, any future

row, column references are taken as offsets from within the partial area; whenever
the whole data set has been selected, row and column references are treated as

references to absolute coordinates. For example, assume a partial area with

bounding ULHC,LRHC comers of (1,1) and (10,10) has been selected and

decompressed; now, a request for a power value of a pixel located at (5,3) will

result in the pixel at (6,4) to be returned, as (6,4) is 5 rows down and 3 columns

over from (1,1).

Once an area has been selected, the program displays the menu of figure 6, which

allows decompression of the selected area. The user chooses this option, and the

screen of fig. 6a pops up as the decompression is performed.

11-14

_i_i_i_ii_i_i_i_i_i!_iiii_i!_ii!i_i_!_!_!_!_i_!!_!__-_`_:_!!!_!_:?_i_i_i_?_i• i:!_i_ ii_ii i ,

I _i_::_i_iiii_i_ii!_i_i!iiiiiii_!_!_!_!_i_i!_i_!_!__!!___'_'_':_!_i_i'_I_,__ _ • : _! _'i_i___i !_

i_!!_!_!!_iii_iii!_i!_!i_!!!_i_i_i_!_!_?_!_!_!_!_i!i!_!!_!_i!i!is__]._:_!!:_!_:_!_!!_:_!_!_!_ili__iii::!_! i i _ii!ii?_:_i__i _ : _

•: ..: -: -: :. ::::.:::: : ::::::::::5::-:_:'::>:'::::5.::::.::::::5:: :::: ::.:5::_:':: ::: : :.:":.: :::::_: :. ::::.:::::::::::_:_:::::.;::::5:::'5,;:,,:::5::::::::::5:::::::,:+:,:5::%:>.:.:_.:<" :-::: :f :::::"::.:::::::::::::::'::L.,: _._.__:., -..,.:,:,:.::-:-:+:;.>:.:+ ,-._ : :,:-:_.-_-- - _ -.,_i_ii!!_i_i_i 0. i::_i:_-_,---_,I:.i_._!i!_il_a_. _. :::_i_:i:__i_i:i_:i__i_i:i_i_i_i_i_i!:i_;i_ii_iii_i_i_i_i_i_i-_--i-i_-_ili_iiiiiili_!____:_ :__:__i_._.ii!__!_!_:i__.i__,;_i__iil !.i:.i:i: iii_i__:, -
::.:::::::::::::.::L:_:;_:_:_:_:_:_:!:!:i:i.::i:::i:_:3_:_:!:!._i:!:!:_:!:!:!:i:i:i:_:!::_:_:_:_:.i:i:::::::::::::!:::::!_::::i:!:i:::;_:__::?'::::!:!:::!:!:i:!:::i:::i:!:i:::;:i:i:i:!:!:_:_:!:::i::_:::-:-_:-::::-":-:?:::::::::::-::-_:-::::::::.-:_.:._.:.,::,i:.:_::,.._._.:i.: "_:_:_:i_,. "':,::::_:::::::::::.:_i.::i::':i, :i,!.-i.:?_,: , , _ ."

•i_i_!_!!_!_'i'i'_f_:_i.:_!i_i_:_:i_ii!iiiiiiiiii_!iii!ii_iii!iii!!ili!!ii!_!i!iiii!i!i!i!iii!_!_!_!_!ii_i_i_ii_i_i_i_!i_ii_ii!iii_iiii_i_i_!_i_i_!_i_!ii_!i!i!ii_i!i_iiii•_i_:___i_i_i_i!iiii!_iiiii!ii!ii!!!_iiiiiiiii!ii_ii_i_ii!_:ii_iiiii!!_!_!

Figure 6

i_!__!_!_!i_!_!i!_r_!!_!_ii_iiiiiii_ii!_iiii!!_!!!_!_i_!iii_!!!!_!i!!!_!i!i!_!ii! _ii_!i,i_i'ii_!!i_i!_ii_ii_ili•i

Figure 6a

After the decompression, the menu of figure 7 is displayed. From this menu,

options 6 through 8 allow pixel- or region-wise analysis of the resulting real data.

Figure 7a shows a selection of option 6, which computes an average of all the real

values decompressed from the selected area; figure 7b shows a listing of the

10-byte record corresponding to pixel (i,1) in the data set, including values to

supply to the Lotus spreadsheet program for verification; and figure 7c shows the

decompressed real value corresponding to the 10-byte record listed in figure 7b.

II-15

JPL: CSM Dec_r_s silon "Progr_ :_= Main MenU:!

ii

i

i

i
ii:);/.':i:i::ii!i!!!;:i

I ::_:!N2_'!I !i!!!!i::ili':!!!i!:.!i!!:.:? !_,il !ii'::.!!_.:.?.=
I

Figure 7

Figure 7a

ayte:I: -62 : ::::!:i:!._.!!.:::!:.:' :/ : : :lo_us ; :USO }66- :-:}77::!:i:./:/::i::::!i!:::::_i::!- " "- i: :i::i/Ii:.Z:I:Z.:;:: ! ::
B_.::2: _ i...... " ::,,.. lot,";uS.it_O_". ":. .L_:::L:_./.i_i_i_i_ii_:_i_i:_:_._r::.:::- :i::
Byte :3" 8_2: : :::: 10tus, _:use210 :::-::-:::.:!!:.:.:.!::'": "::i:-/::(:}.i::.ii;.- : :::::::::::}:::::k::::::::::::.::]::::?::/::Z::}:::}:::::

B_e 5: 83- :' " "1orus _:_u-Q"211:::_._r:?r: .:. .: ::::.;i::::ill:!!:::Li::.:iii:!_//iiii.:::: :._i-:::::
B_e6: _::::: :": :: : ':i0tus,:"u,Q:I_4 ::":: ':: : ' :::}!:-:!::_i:._": ::_"!i i_i/i):.:ii.i:..: i: .:::
Byte 7:: 43 : " - lotus; :U_'"I71:-ii{-/-}/::-}::: i: _i:: Ti::L iii: _i.-:.::":': :.i:_!:i}.:..: :::i
ea:-: :,a:" : .: :_"":. lotus, us, _2 . : .-. _.:_.i:i:::.i::::;..-:r_::::::_:::i/.::::_::::!:i:":.:._:_il:-:i
Byte 9" 35 lotus, USe I63 : . "": i :]i:i:i-:..:" "._:-::::::i!_ily_::::iilli::.://.:::i:::i
(Press EN_R to COntinue...) . " ZI}:.::::}_.::-: i!}/:!:!!?.i..: :" Z":i::i:_:ii:i :): }i::::..:iii::.ii::.!!::i::ii?:!:ii.i-:::i_i!:_i.?.::::]ii:

Figure 7b

H-16

At the end of the analysis, option 0 is chosen, and the program terminates and
returns the user to UNIX.

II-17

Appendix 1: LOTUS Spreadsheet Listing

Mahantango 080-3 L-BAND, pixel (1,1)

A:AI: 'User Entry Area:

A:DI: 'Byte Values

[0..255]
A:D2: 'byte 1

A:E2: 128

A:D3: 'byte 2

A:E3: 66

A:A4: 'Gen fac

A:D4: 'byte 3

A:E4: 204

A:A5:44.51778

A:D5: 'byte 4
A:E5:210

A:D6: "byte 5
A:E6: 136

A:A7: 'Vectors

A:B7: 'Degrees

A:D7: 'byte 6
A:E7: 211

A:A8: 'tr ellip
A:B8:45

A:DS: 'byte 7

A:E8: 194

A:A9: 'tr orien

A:Bg: 45

A:D9: 'byte 8

A:E9: 171

A:AI0: 'rc ellip

A:BI0:45

A:DI0: 'byte 9
A:EI0: 92

A:AII: 'rc orien

A:BII: 45

A:DII: 'byte I0

A:EII: 163

A:AI3: "Computation
A:AI4: 'stvec

A:AI5: 1

A:BI5: @COS(2"B18)*

@COS(2"B19)

A:CI5: @SIN(2*BI8)*

@COS(2"B19)

A:DI5: @SIN(2*BI9)

A:AI7: 'Vectors

Area:

A:Bi7:

A:EI7:

A:AI8:

A:BI8:

A:EI8:

A:AI9:

A:BI9:

A:EI9:

A:A20:

A:B20:

A:E20:

A:A21:

A:B21:

A:E21:

A:A24:

A:C24:

A:A25:

A:C25:

A:D25:

A:A26:

A:A27:

A:C27:

A:D27:

A:A28:

A:C28:

A:D28:

A:A29:

A:C29:

A:D29:

A:A30:

A:C30:

A:D30:

A:A31:

A:C31:

A:D31:

A:A32:

A:C32:

A:D32:

A:A33:

II-18

'Radians

'srvec

'tr ellip

+BS*@PI/180

1

'tr orien

+B9*@PI/180

@COS(2*B20)*@COS(2*B21)

'rc ellip

+BI0*@PI/180

@SIN(2*B20)*@COS(2*B21)

'rc orien

+BII*@PI/180

@SIN(2*B21)

'Bytes-128

'Xij array
+E2-128

@EXP(A25*@iN(2))*

(A26/254+I.5)*A5

_Fllhat

+E3-128

+E4-128

+A27/127

'XI2

+E5-128

(A28/@ABS(A28))*@EXP(2*@LN(

@ABS(A28/127)))

'XI3

+E6-128

(A29/@ABS(A29))*@EXP(2*@LN(

@ABS(A29/127)))

'XI4

+E7-128

(A30/@ABS(A30))*@EXP(2*@LN(

@ABS(A30/127)))

'X23

+E8-128

(A31/@ABS (A31)) *@EXP (2*@LN (

@ABS (A31/127)))
'X24

+E9-128

+A32/127

'X33

+EI0-128

A:C33:
A:D33:
A:A34:
A:C34:
A:D34:
A:A36:
A:A37:
A:B37 :
A:C37:
A:D37:
A:A38:
A:B38:
A:C38:
A:D38:
A:A39:
A:B39:
A:C39:
A:D39:
A:A40:
A:B40:
A:C40:
A:D40:
A:A42:

A:A43:
A:B43:
A:C43:
A:D43:
A:A44:
A:B44:
A:C44:
A:D44:
A:A45:
A:B45:
A:C45:
A:D45:
A:A46:
A:B46:
A:C46:
A:D46:
A:A48:

A:A49:
A:B49:
A:C49:
A:D49:
A:A50:
A:B50:
A:C50:
A:D50:

+A33/127
'X34
+EII-128
+A34/127
'X44
'F array
+C25
+C27"C$25
+C28"C$25
+C29"C$25
+B37
+A37-C39-D40
+C30"C$25
+C31"C$25
+C37
+C38
+C32"C$25
+C33"C$25
+D37
+D38
+D39
+C34"C$25

'Multiply cols

stvec below

+A$15*A37

+B$15*B37

+C$15"C37

+D$15*D37

+A$15*A38

+B$15*B38

+C$15"C38

+D$15*D38

+A$15*A39

+B$15*B39

+C$15"C39

+D$15*D39

+A$15*A40

+B$15*B40

+C$15"C40

+D$15*D40

'Multiply those

rows by srvec
below

+$EI8*A43

+$EI8*B43

+$E18"C43

+$EI8*D43

+$EI9*A44

+$EI9*B44

+$E19"C44

+$EIg*D44

by

A:A51:

A:B51:

A:C51:

A:D51:

A:A52:

A:B52:

A:C52:

A:D52:

A:A54:

A:A55:

A:C55:

II-19

+$E20*A45

+$E20*B45

+$E20"C45

+$E20*D45

+$E21*A46

+$E21*B46

+$E21"C46

+$E21*D46

'Results:

'Total Power:

@SUM(A49..D52)

Appendix 2: Source Listing

***** FILE: Makefile

CC=gcc

CFLAGS=-g

LFLAGS=-Im

TPFILS=prep.o main2.o cls.o util.o sub.o avgreals.o im.o ga.o tp.o

TPDEPS=types.h menu.h

main: $(TPFILS) $(TPDEPS)

$(CC) $(CFLAGS) $(TPFILS) $(LFLAGS) -o main

clean:

rm -f main

rm -f *.o

rm -f core

touch *.c

clear:

rm -f *.o

rm -f core

II-20

***** FILE: types.h

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

#include <math.h>

#define flag

#define querys(var)

#define queryi(var)

#define queryf(var)

#define bomb(str)

#define max(x,y)

#define min(x,y)

#define pol(x)

./

#define abs(x)

#define MAGIC

write32*/

#define SIGN(X)

#define MAX(X, Y)

#define ToRad (X)

#define writereal(R, OUT)

#define readreal(PR, IN)

#ifndef MAX STR LEN

#define MAX--S TR--LEN

#endif

#define FIELD WIDTH

#define bool

#define true

#define false

printf ("<%s:%d>", FILE , LINE) ; printf

printf ("String varia---ble var is %s\--n", vat)

printf ("Integer variable vat is %d\n", vat)

printf ("Real variable var is %e\n", vat)

fprintf(stderr,"Fatal error: %skn",str) ;

((x > y} ? x : y)

((x > y) ? y : x)

x'3.14159265/90.0 /* only valid for stokes computations

(x < 0) ? -I * x : x /* works for reals */

0x4a4d4f69 /* All bytes different, used for

(((x) <0) ?-i :I)
(((X)>(Y))?(X): (Y))
((float) X*acos (-i.)/180.)

fwrite (& (R), 4L, IL, OUT)

fread(&(PR),4L, iL, IN)

255

50
int

-i

0

/**** definitions for generic use ****/

#define WAIT {printf(" (Press ENTER to continue...)") ; getchar() ; getchar() ; }

#define TOPLINE(str) { clear screen(); \

printf("JPL CSM Decompression Program -- %s\n\n",str) ; }

/**** structure definitions, global variables **************************

typedef struct headertypestruct {

FILE *fp;

char fname[80];

char scene[80];

int window;

int rlib;

int nohr;

int boooh;

float gen_fac;

int ichit;

int ipsit;

ant ichir;

ant ipsir;

int nline;

ant nsamp;

int boofdr[10];

ant w[10];

int h[10];

) *headertype;

/* pointer to disk file */

/* name of disk file */

/* scene title */

/* 0=whole ds; l-9=subwindows */

/* record length in bytes */

/* number of header records */

/* byte offset of old header */

/* general scale factor */

/* polarization angles */

/* number of lines(records) */

/* number of pixels(samples) per line */

/* byte-offset of first data record */

/* subsection width */

/* subsection height */

#define make(TYP) (TYP)malloc(sizeof(struct TYP##struct))

/**** global functions ***

II-21

extern char *matchafter () ;

extern void prepfiles() ;

extern void clear screen() ;

extern void sub sect ();

extern void csm2pwr() ;

extern float avg_reals();

extern void inter main() ;

extern void get l_c() ;

extern void dump_header () ;

/**** global variables ***

extern char * cls string;

II-22

***** FILE: menu.h

#define MAXMENUS 20

#define MENUSTART

MENU ct=0, MENU_goto=0; \

MENU_type MENU ents[10];\
while(MENU ans) { \
MENU num=l; MENU Ct=0;

#define MENUEND } /* end menu while */--}

#define MENU(Ivl,str) MENU ct++; \

if (MENU level>=ivl) { \

MENU_ents[MENU_num].level=ivl; \

MENU_ents[MENU__num].casetag=MENU_ct; \

printf(MENUFMT,MENU_num++,str); }
#define MENUIN MENU level=MENU ents[MENU ans].level+l

#define MENUOUT MENU IeveI_MENU ents[_4ENU ans].Tevel-I

#define MENUSELBEGIN -- printf(MENUFMT, 0,"Q_it"); \

MENU ans=getchoice(MENU_num-l); \
if(MENU ans!=0) \

MENU_goto=MENU_ents[MENUans].casetag; \

else MENU_goto=0; \

switch(MENU_goto)(

#define MENUSELEND default: /* quit code here */; break; }
#define MENUFMT "\t%d.\t%s\n\n"

{ int MENU num, MENU ans=-l, MENU_level=0, \

typedef struct menustruct {

int level, casetag;

} MENU_type;

int getchoice(int n)

/* returns an integer in the range [0..n] corresponding to user
input; routine will lock until proper input is obtained */

I
char choice[10];

int ich = -i;

while(ich<0) (

printf("Your choice [0-%id] : ",n) ;

scanf(" %s", choice) ;

if ((!isdigit (choice [0])) I I

((ich=atoi(choice))>n) II (ich < 0)) {

printf("Invalid input \"%d\"; try again. ",ich);
ich = -i;

else

return ich;

} /* while */

] /* getchoice */

/****************/

II-23

***** FILE: main2.c

/* main2.c

* intended as a replacement for main.c

* integrate checks on argc, argv to be able to run batch mode, later.

*/

#include "types.h"

main(int argc, char **argv)

{
inter main(argc, argv);

print_("Operation complete.\n");

)

II-24

***** FILE: im.c

/*** im.c, inter main interactive function */

#include "types.h"

#include "menu.h" /* new menu system */

void inter main(int argc, char **argv) { /* variable declarations */

headertype head, realwin;

int c;

long int fpos;

head=make(headertype);

realwin=make(headertype); /* contains tmpfile of real #'s */

fclose(realwin->fp);

fclose(head->fp);

/* loop until done */

MENUSTART

TOPLINE("Main Menu");

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

#ifdef DEBUG

0,"Open Data File") ;

l,"Enter DS Attributes") ;

2, "Select Entire DS") ;

2, "Select Partial Area");

3, "Decompress Your Selection") ;

4,"Find Avg Power for Selection");

4,"List Byte Values for a Pixel");

4,"List Power Values for a Pixel");

MENU(2,"List DS header values -- DEBUGGING");

MENU(3,"List realwin header values");

#endif

/* i */
/* 2 */

/* 3 */
/* 4 */
/* 5 */

/* 6 */
/* 7 */

/* 8 */

MENUSELBEGIN

case I: /* open file menu */

open_file(argc, argv, head);

prepfiles(head);

MENUIN;

break;

case 2: /* get attrs -> tr, rc, angles... */

get DS attrs(head);

MENUIN;

break;

case 3: /* whole data set */

TOPLINE("Whole DS");

head->window=0; /* use whole set */

printf("Entire data set selected.\n");

WAIT;

MENUIN;

break;

case 4: /* partial data set */

TOPLINE("Sub Section");

head->window=l;

sub sect(head);

WAIF;

MENUIN;

break;

case 5_ /* perform decompression from above selections */

TOPLINE("Decompression");

csm2pwr(head, realwin);

WAIT;

MENUIN;

break;

case 6: /* average power */

II-25

TOPLINE("Average Reals") ;

avg_reals (realwin) ;

WAIT ;

break;

case 7: /* look at one pixel's values */

TOPLINE("List Bytes") ;

{
char ch;

get_loc (head, 10) ;

for (c=0;c<10; c++) (

ch = (char) getc (head->fp) ;

printf("Byte %d:\t%d\t\tlotus, use %d\n",

c, (int) ch, (int) ch+128) ;

}
}
WAIT;

break;

case 8: /* look at point power, if decompressed _/

{
float f ;

TOPLINE("List Power") ;

get_loc (realwin, 4) ;

readreal (f, realwin->fp) ;

printf("Decompressed value is %f\n", f) ;

WAIT;

)
break;

case 9: /* dump out header data type */

TOPLINE ("Dumping Header") ;

dump_header (head) ;

WAIT;

break;

case I0: /* dump realwin header info */

TOPLINE("Dumping realwin header");

dump_header(realwin):

WAIT;

break;

MENUSELEND

MENUEND

} /* inter main */

II-26

***** FILE: prep.c

/*** prep.c, function prepfiles (how much is global???) */

#include "types.h"

char *matchafter(char *string, char *buffer, int buflen)

/* looks for string in buffer, returns 50 character field with the string minus

the string

* itself. */

(
char *fs;

int i, found;

fs=(char *)malloc((long) 51) ;

fs [503=' \0' ;

/* preload the comparison buffer */

for (i=l;i<50; i++) {

fs[i] =*(buffer++) ;

buf len-- ;

)

found=0;

while ((buflen) && (!found)){

/* slide the window */

for(i=0;i<49;i++) fs[i]=fs[i+l];

fs[i]=*(buffer++);

buflen--;

/* do the comparison */

for(found=l,i=0; (i<strlen(string)) && (found); i++)

found &= (string[i]==fs[i]);

if (found) (

/* clean up string, i.e., remove control characters */

for (i=0; i<50; i++)

if ((fs[i]<(int)32) i{ (fs[i]>(int)126))

fs[i]=(int)32;

/* now, remove the original part of the search path */

for (i=0; i<50-strlen(string); i++)

fs[i]=fs[i+strlen(string)];

fs[i]='\0';

return fs;

}
else

return (char *)NULL;

) /* matchafter */

void prepfiles (headertype header)

{

char *tmp, buf[20480];

int ch;

int newheader, i, j, flen;

/* additional change: check if file is a pointer to another file;

* Such files will meet the following format specification:

* <FILE> ::= #<path> t <data>

II-27

li

* <path> ::= standard UNIX path without wildcards

* <data> : := standard JPL CSM data

* Originally developed to eliminate name-hunting on networked file

systems.

./

/* determine new or old header */

fread (buf, (long) I, (long) I0, header->fp) ;

buf[9] _ '\0';

newheader = (strcmp (buf, "RECORD LE") == 0) ? -i : 0;

fseek(header->fp, 0L, 0) ;

/* process new header file */

if (newheader) {

printf ("File is in new header format...kn");

/* determine record length in bytes */

flen=fread (buf, (long) i, (long) 50, header->fp) ;

tmp=matchafter("RECORD LENGTH IN BYTES = ",buf, flen);

sscanf(tmp," %d",& (header->rlib)) ;

/* determine number of header records */

flen=fread (buf, (long) i, (long) 50,header->fP) ;

tmp=matchafter("NUMBER OF HEADER RECORDS = ",buf, flen);

sscanf (tmp, " %d",& (header->nohr)) ;

/* rewind, and get rest of header */

fseek(header->fp,' (long) 0, 0) ;

flen=fread (buf, (long) i, (long) header->rlib*header->nohr, header->fp) ;

/*** ready to process header file info */

/* get number of samples per record */

tmp=matchafter("NUMBER OF SAMPLES PEK RECORD = ",buf, flen);

sscanf(tmp, " %d",& (header->nsamp)) ;

/* get byte offset of old header */

tmp=matchafter("BYTE OFFSET OF OLD HEADER = ",buf, flen);

sscanf(tmp, " %d",& (header->boooh)) ; /* use this to skip to old header

*/

/* get number of lines in image */

tmp=matchafter("NUMBER OF LINES IN IMAGE = ",buf, flen);

sscanf(tmp," %d",&(header->nline));

header->w[0]=header->nsamp;

header->h[0]=header->nline;

/* get byte offer of first data record */

tmp=matchafter("BYTE OFFSET OF FIRST DATA RECORD = ",buf, flen);

sscanf(tmp," %d",&(header->boofdr[0])) ;

/* skip to old header, get scale factor; reload buffer */

fseek(header->fp, (long)header->boooh, 0);

/* read in the old header record */

flen=fread(buf, iL, (long)header->rlib, header->fP) ;

/, get gen_fac */

tmp=matchafter("COMP SCALE FACTOR:",buf,flen);

sscanf(tmp," %e",&(header->gen_fac));

/* old comp scale factor --

II-28

fseek (header->fp, 16872, 0); */

/* get scene title */

tmp=matchafter("SCENE TITLE: ",buf,flen) ;

sscanf (tmp, "%35c", & (header->scene)) ;

} /* endif */

else { /* old header */
printf ("File is in old header format,");

printf (" assuming i024x750 pixels...\n");

header->nsamp = 1024;
header->nline = 750; .

header->boofdr[0] = 10240;

header->w[0]=header->nsamp;

header->h[0]=header->nline;

fseek (header->fp, (long) 10492392, 0);

fread (buf, IL, 13L, header->fp);

sscanf (buf, "%e", &(header->gen_fac));

} /* endelse */

fseek(header->fp, header->boofdr[0],0L);

} /* prepfiles */

II-29

***** FILE: sub.c

/*** sub.C */

#include "types.h"

void sub sect(headertype h)

/*--prompts user for row, col bounding coords, returns subsectioned CSM

* data from "in" into "sw" */

{
int rl,cl,r2,c2;

int w;

w=h->window;

printf("Enter ULHC of bounding box (row, col) orig = (0,0): ");

scanf ("%d,%d",&rl,&cl) ;

printf("Enter LRHC (row, col): ");

scanf ("%d, %d", &r2, &c2) ;

/* determine width,height in terms of 10-byte pixels */

h->w[w] = c2-ci+I;

h->h[w] = r2-rl+l;

/* compute boofdr */

h->boofdr[w] = h->boofdr[0]+10*(rl*h->nsamp + cl);

fseek(h->fp, h->boofdr[w], 0);

/* later, modify to allow for multiple subsection selections */

} /* sub sect */

11-30

***** FILE: tp.c

/* TotalPower.c, by Russell Fink (rfink@eng.umd.edu)*/

#include "types.h"

/* global array definitions -- used so they don't have to always be recomputed

./
float EQI[256] [256],EQ21256],EQ31256];

int computed_yet=0; /* not yet computed */

void csm2pwr_headertype h, headertype rw)

{
/* variable declarations */

float stvec[4],srvec[4];

int i,j;

float M[4] [4];

extern float EQI[256] [256],EQ21256],EQ31256];

float F[4] [4],Fllhat,power;

int line;

int pixel;

char dataline[10] [i024];

float line of reals[1024];

long int skip;

printf("Preparing for decompression...\n");

/* initialize real window (rw) and copy some attributes from the main window (h)

*/
fclose(rw->fp); /* if already open; */

strcpy(rw->fname,"<tempfile>"); /* be able to rename this later */

rw->fp=tmpfile(); /* for some reason, opening a normal file "wb+" won't

work */

fseek (rw->fp, 0L, 0L) ;

rw->rlib=4*1024; /* sizeof real numbers * records -- not important*/

rw->nohr=0;

rw->nline=h->h_h->window_;

rw->nsamp=h->w[h->window];

rw->boofdr[0]=0;

rw->h[0]=rw->nline;

rw->w[0]=rw->nsamp;

rw->window=0;

/* convert ellipticity and orientation angles from degrees to radians, and

* calculate transmit and receive stokes vectors for chosen polarization

* combination */

stvec [0] = 1.0;

stvec [i] _ cos (2.0*ToRad(h->ipsit)) * cos (2.0*ToRad(h->ichit));

stvec [2] = sin (2.0*ToRad(h->ipsit)) * cos (2.0*ToRad(h->ichit));

stvec [3] = sin (2.0*ToRad(h->ichit));

srvec [0] = 1.0;

srvec [i] = cos (2.0*ToRad(h->ipsir)) * cos (2.0*ToRad(h->ichir)) ;

srvec [2] = sin (2.0*ToRad(h->ipsir)) * cos (2.0*ToRad(h->ichir));

srvec [3] = sin (2.0*ToRad(h->ichir)) ;

/* Create transmit, receive polarization multiplicity matrix (scale array) */

for (i=0; i<4 ; i++)

for(j=i;j<4;j++) {

if (i==j)

M_i] [j]=srvec[i]*stvec[j];
else

II-31

M[i] [j]=srvec[i]*stvec[j] + srvec[j]*stvec[i];

/* Construct decompression 'equation' arrays --

* EQl[byte I] [byte 2]: returns Fllhat given values of bytes I & 2

* EQ2[byte n]: returns byte n/127; used for XI2,X33,X34,X44

* EQ3[byte n] : returns square(n/127)*sign for XI3,XI4,X23,X24

* These equations remove a bulk of the arithmetic operations from the

* main decompression loop by replacing the costly arithmetic with simple

* look-up operations.

* If these have been computed already (from another pass), do NOT recompute.

*/
if(!computed_yet) {

for(i=-128;i<128;i++) {

for(j=-128;j<128;j++)

EQI[i+I28] [j+128]=((float)j/256.0+l.5)*pow(2.0, (float)i)

* (float)h->gen_fac;

EQ2 [i+128] = (float) i/127.0;

EQ3[i+128]=(float)SIGN(i)*pow((float)i/127.0,2.0) ;

)
computed__yet=-l;

} /* if */

/* decompress and scale the power for each pixel in the data array; to simplify

* expressions, use the c preprocessor macro utility to quickly dereference

* data in the array */

/* Skip to byte offset of first data record */

fseek(h->fp, h->boofdr[h->window],0);

/* begin decompression loop */

#define dbyte(x) ((int)dataline[x] [pixel])+128

printf ("Beginning decompression loop...\n\n");

for (line=0; line < h->h[h->window]; line++) {

#ifdef DEBUG

printf ("^[[A"); /* fill in the ansi move-up code */

printf ("Decompressing line %d... \n", line);

#endif

/* read the next line of data */

for (pixel=0; pixel<h->w[h->window]; pixel++)

for(i=0; i<10; i++)

dataline[i] [pixel]=fgetc(h->fp);

for (pixel=0; pixel<h->w[h->window]; pixel++) {

/* fill in code for power loop here; Fllhat = F[0] [0] */

Fllhat=EQl[dbyte(0)] [dbyte(1)];

/* multiply each remaining Xij by Fllhat to get Fij */

F[0] [0]=I.0; /* will be factored in later */

F[0] [l]=EQ2[dbyte(2)] ;

F [0] [2] =EQ3 [dbyte (3)] ;

F[0] [3]=EQ3[dbyte(4)] ;

F[I] [2]=EQ3[dbyte(5)] ;

F[I] [3]=EQ3[dbyte(6)];

F[2] [2]=EQ2 [dbyte (7)] ;

F[2] [3]=EQ2 [dbyte (8)] ;

F[3] [3]=EQ2[dbyte(9)] ;

II-32

F[I] [I]=F[0] [0]-F[2] [2]-F[3] [3] ;

/* add up elements of F * rotation matrix M to get total power */

power=0.0;
for(i=0;i<4;i++)

for(j=i;j<4;j++)

power += F[i] [j]*M[i] [j];

power *= Fllhat;

/* above code requires 11 mults and 12 adds */

/* handle problems where power is slightly less than zero */

power = MAX(0.0000,power);

/* dump raw power */
line of reals[pixel] = power;

/* skip to next record in sample window (from current Position */

skip=10*(h->nsamp - h->w[h->window]);

fseek(h->fp, skip, iL);

] /* endfor (pixel) */

/* write a line of data */

for(pixel=0;pixel<rw->w[0];pixel++) {

writereal(line of reals[pixel],rw->fp);
!

) /* endfor (line) */

} /* endmain */

II-33

***** FILE: avgreals.c

/*** avgreals.c */

#include "types.h"

float avg_reals(headertype rw)
!

int i,j,win:

float avg, t;

if(ftell(rw->fp)<0) {
printf("Must decompress data, first!\n") ;

WAIT;
return 0.0;

!
win=rw->window;

fseek(rw->fp, 0L, 0L);

avg = 0.0;

for(i=0; i<rw->h[win]; i++)

for(j=0; j<rw->w[win]; j++) {
readreal(t, rw->fp);

#ifdef DEBUG

flag("Read %f\n",t);
#endif

avg += t;
}

avg = avg / (float) (i'j);
printf("Average power over data region is %f\n",avg);

return avg;

} /* avg_reals */

. II-34

"mL.._

***** FILE: ga.c

/*** ga.c */

#include "types.h"

void get DS attrs(headertype h)

/* loads data set attributes; separate procedure to allow expansion/savable

attributes */

{
int f;

TOPLINE("Get Attributes");

printf("Enter the following INTEGER

%s\n\n",h->scene);

printf("Transmit ellipticity angle: ");

scanf(" %d",&f);

h->ichit=f;

printf("Transmit orientation angle: ");

scanf(" %d",&f);

h->ipsit=f;

printf("Receive ellipticity angle: ");

scanf(" %d",&f);

h->ichir=f;

printf("Receive orientation angle: ");

scanf(" %d",&f);

h->ipsir=f;

attributes for scene:

WAIT;

} /* get DS attrs */

II-35

***** FILE: util.c

/*** util.c */

#include "types.h"

void open_file(int argc, char **argv, headertype h)

{
char ch, buf[80];

TOPLINE("Open Data File") ;

if (argc<2) {

printf("Enter the name of the data file (or pointer file): ");

scanf(" %s",h->fname) ;

}
else strcpy(h->fname, argv[l]);

h-_fp=fopen (h->fname, "r") ;

if (' #' == (ch=fgetc (h->fp))) {

/* look up other file info, open other file */

fscanf(h->fp," %s",buf) ;

fclose (h->fp) ;

printf (" (opening %s)\n",buf) ;

strcpy (h->fname, bur) ;

if(! (h->fp=fopen(buf,"r"))) |

bomb("pointer to illegal file name");

exit (-I) ;

!
}

fseek (h->fp, 0L, 0L) ;

#ifdef DEBUG

flag ("File position is %d\n",ftell(h->fp)) ;

#endif

} /* open_file */

void get_loc(headertype h, int dsiz)

/* prompts user for row, col of a pixel of size dsiz and repositions h->fp

accordingly */

{
int r, c;

printf("Enter the row and column (r,c) of the element: ") ;

scanf(" %d, %d",&r, &c) ;

/* seek the file there -- later, check for valid coords */

if(ftell(h->fp)<0) {

bomb("File not Open");

return;

]
fseek(h->fp, (h->nsamp*r+c)*dsiz+h->boofdr[h->window],OL);

#ifdef DEBUG

flag("File position is %Id\n",ftell(h->fp)) ;

#endif

} /* get_loc */

void dump_header(headertype h)

/* prints the contents of the header h */

{
printf("name of disk file -- %s\n",h->fname);

printf("scene title -- %skn",h->scene);

II-36

printf ("selected window -- %d\n",h->window) ;

printf("record length in bytes -- %d\n",h->rlib);

printf("number of header records -- %d\n",h->nohr);

printf("byte offset of old header -- %d\n",h->boooh);

printf("general scale factor-- %f\n",h->gen_fac);

printf("polarization angles:\n\tichit -- %d\n",h->ichit) ;

printf("\tipsit -- %d\n",h->ipsit) ;

printf("\tichir -- %dkn",h->ichir) ;

printf("ktipsir -- %d\n",h->ipsir) ;

printf ("number of lines (records) -- %d\n",h->nline) ;

printf("number of pixels(samples) per line -- %d\n",h->nsamp);

printf("byte-offset of first data record (current window) -- %dkn",

h->boofdr [h->window]) ,

printf("subsection width (current window) -- %dkn",

h->w [h->window]) ;

printf("subsection height (current window) -- %d\n",

h->h [h->window]) ;

} /* dump_header */

I1-37

***** FILE: cls.c

/*** cls.c ***/

#include "types.h"

#define CLEAR COMMAND

char * cls st_ing;

"echo

void clear screen()

{
#ifdef CLEAR COMMAND

if(clLstring==(char *)NULL){

/* create it */

FILE *tmp;

char namel[80],com[80], *junk;

cls_string=(char *)malloc(80);

tmpnam(namel) ; /* create name of dummy file */

strcpy (com, CLEAR COMMAND) ;

strcat (com, "> ") ;

strcat (com, namel) ;

system(com) ; /* clear the screen into a file */

tmp=fopen (namel, "r") ;

junk--_cls_st ring;

while(EOF!=(*junk++=(unsigned char) fgetc(tmp))) ;

--junk='\0'; / string terminator */

fclose (trap) ;

strcpy(com,"rm -f ") ;

strcat (com, namel) ;

system (corn) ;

}
/* delete the temp file */

#else

#endif

printf ("%s",_cls_string) ;

/* use for dumb terminals, or non-unix machines */

int i=0;

for(;i<40;i++)

printf("\n") ;

} /* clear screen */

II-38

